top of page

Keynote Talk  - Wednesday, 15 September I 14:00 PM (CEST)

KerstinBlank_small_bw.jpg

Dr. Kerstin Blank: "Mechanoresponsive proteins - from molecular mechanisms towards applications in biology and materials science"

​

​

Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Potsdam-Golm, Germany

Proteins are essential building blocks of biogenic materials. In addition to purely protein-based materials, a wide range of different composite materials are formed, where proteins mediate specific interactions with other organic molecules (e. g. carbohydrates) or mineral surfaces. In all cases, the thermodynamic, kinetic and mechanical stability of protein interactions crucially determines material assembly, structure and function. From a mechanical point of view, function includes structural stability as well as mechanosensing, actuation and self-healing. Using single-molecule force spectroscopy, we aim to establish sequence-structure-MECHANICS relationships of protein-based material building blocks with the goal of understanding their role in Nature and to subsequently utilize these building blocks for building smart bioinspired materials. Specifically, I will focus on two examples. The first example introduces coiled coils, which are highly abundant building blocks in mammalian tissues. Using synthetic coiled coils, we have unravelled key factors that determine the stability of these structures against shear forces [1-3]. We subsequently utilized this knowledge to establish a library of mechanically calibrated coiled coils, which are now further developed as mechanosensors for cell biology applications and as mechanoresponsive hydrogel crosslinks [4-6]. The second example shows bacteria-derived proteins that control the formation of nanometre-sized magnetite crystals. Here, single-molecule force spectroscopy serves as an excellent tool to probe the kinetics and the crystal face specificity of the protein-magnetite interaction [7]. Even though these proteins do not experience force in Nature, engineered variants with controlled binding strength can potentially serve as powerful building blocks for controlling the properties of magnetic particle-reinforced composites.

 

 

 

  1. M. Goktas, C. Luo, R. M. A. Sullan, A. E. Bergues-Pupo, R. Lipowsky, A. Vila Verde, K. G. Blank (2018) Chem. Sci. 9:4610

  2. P. López-García, M. Goktas, A. E. Bergues-Pupo, B. Koksch, D. Varón Silva, K. G. Blank (2019) Phys. Chem. Chem. Phys. 21:9145

  3. P. López-García, A. D. de Araujo, A. E. Bergues-Pupo, I. Tunn, D. P. Fairlie, K. G. Blank (2021) Angew. Chem. Int. Ed. 60:232

  4. I. Tunn, A. S. de Léon, K. G. Blank, M. J. Harrington (2018) Nanoscale 10:22725

  5. I. Tunn, M. J. Harrington, K. G. Blank (2019) Biomimetics 4:25

  6. E. M. Grad, I. Tunn, D. Voerman, A. S. de Léon, R. Hammink, K. G. Blank (2020) Front. Chem. 8:536

  7. A. Pohl, F. Berger, R. M. A. Sullan, C. Valverde-Tercedor, K. Freindl, N. Spiridis, C. T. Lefèvre, N. Menguy, S. Klumpp, K. G. Blank, D. Faivre (2019) Nano Lett. 19: 8207

 

bottom of page